2024第一届认知智能与大数据技术研讨会

1 USTC

2 SUDA

Crowdsensing Data Trading for Unknown Market: Privacy, Stability, and Conflicts

He Sun¹, Mingjun Xiao¹, Yin Xu¹, Guoju Gao², Shu Zhang¹

IEEE TRANSACTIONS ON MOBILE COMPUTING

Key Question

How to design a Crowdsensing Data Trading Framework considering privacy and stability for unknown market in centralized^[1] and **decentralized**^[2] settings?

认知智能全国重点实验室

Introduction

Crowdsensing Data Trading (CDT)

A new data trading paradigm where the Mobile CrowdSensing (MCS) technique is adopted to provide data sources, e.g., Thingful, ThingSpeak.

$\succ \delta$ -Stable Matching Model

(Definition of preference	
	Unknown preference sequences of the buyer	Preference sequence of the seller
	✓ Denoted by $\pi_k^{l'} = \{, \pi_i^l,\}, \ \pi_i^l = \{, j, j',\}.$	
	✓ $\pi_i^l(j)$ denotes the rank of seller <i>j</i> in π_i^l .	✓ Denoted by $\pi_j = \{\dots, i, i', \dots\}$.
	✓ $v_i = \{, v_i^l(j),\}$ denotes the value. (Unknown)	• $\pi_j(l)$ denotes the rank of task l in π_j .

Adding noise Matching is not truly stable

Definition of \delta-stable: We say a market outcome M^l is δ -stable with a probability less equal than $1 - \delta$ that a preference sequence is invalid, i.e., there exists two matching pairs $\langle i,j \rangle$ and $\langle i,j^* \rangle$, $\forall i \in T$, $\forall j,j^* \in S$, satisfies $\pi_i^l(j) \prec_i \pi_i^l(j^*)$, $\hat{\pi}_i^l(j) \prec_i \hat{\pi}_i^l(j^*)$ and $\hat{v}_i^l(j) - \hat{v}_i^l(j) \prec_i \hat{\pi}_i^l(j^*)$ $\hat{v}_i^l(j^*) > \xi'_0$, denoted by \hat{M}^k . ξ'_0 is a perturbed care bound and δ is a constant less than but close to 1. $\pi_i^l(j) \prec_i \pi_i^l(j^*)$: task *i* prefers seller *j* to j^* in l^{th} round.

- Concept of Matching Markets
- \checkmark Both sides of the markets can' t just choose what you want even if you can afford it.
- \checkmark One of them also have to be chosen.
- \checkmark They choose each other according to the preferences of each other.
- Components of CDT systems

Platform: As a broker, it provides credible data trading services for sellers and buyers. Buyers: Propose and publish their data requirements to the platform to collect data. Sellers: A crowd of mobile users to provide data collection service to buyers.

PS-CDT platform

- Existing Problems
- A. A few existing CDTs consider the stability of the Data Trading Market.
- The Data Trading Market is unknown in practice, i.e., the preference sequences Β. over sellers are unknown by buyers.
- The private information of sellers needs to be preserved. C.
- D. Decentralized CDT has more practical significance.
- Two matching requests for the same seller would create a competitive E. matching conflict.
- > Contributions
- \checkmark To the best of our knowledge, this is the first CDT work that takes the unknown market, privacy preservation, and the stability of the data trading into consideration simultaneously in centralized and decentralized settings.

Problem formulation

Our goal is to make the optimal matching in each round according to the built perturbed preference sequences, i.e., to maximize the expected accumulative reward for each task, assuring the ϵ -differential privacy and δ -stable of market outcomes in each rounds.

Maximize:
$$\sum_{l} q_{i}^{l} \left(m^{l} \left(i \right) \right)$$

Subject to: Eq.(1) holds

```
M^l is \delta – stable
```

DPS-CB and CDPS-CB mechanisms

Algorithm 1: DPS-CB mechanism	Algorithm 2: CDPS-CB mechanism	
Input: the total rounds N , the preference sequences	Input: the preference sequences set $\{ \bar{\pi}_j \forall j \in \mathcal{S} \}$ of	
set $\{\bar{\pi}_j \forall j \in S\}$ of sellers.	sellers, the Bernoulli mean p	
Output: $\{M^l l = 1, 2,\}$	Output: $\{\mathcal{M}^l \ l=1,2,\}$	
1 for $l = 1,, N$ do	1 Initialization:	
2 if $l \leq T$ then	2 $I^1_i(j)=+\infty, \ orall i\in \mathcal{T}, \ j\in \mathcal{S};$	
3 $ m^l(l) \leftarrow j, \ orall \ j \in \mathcal{S};$	${\mathfrak s}$ Find a matching that one-to-one maps from i to j	
4 Get $\hat{q}_{l}^{l}(j)$ as the corresponding reward	randomly, $orall i \in \mathcal{T}, \; j \in \mathcal{S}$;	
according to Eqs. (6-8) while using ϵ as the	4 for $l=0,,N$ do	
privacy budget under the hybrid	5 for $i=1,,T$ do	
differentially private mechanism:	6 Sample an random value $B^{l}(i)$ from $Ber(p)$;	
5 else if $l = T + 1$ then	7 if $B^l(i) = 0$ then	
6 Compute the DP-UCB indexes $I^{l}(i), \forall i \in \mathcal{T}$.	8 Update the set of feasible sellers according	
$\forall i \in S$ according to Eq. (9):	to Eqs (10);	
7 Sort the sellers by the DP-UCB index to build	9 Task <i>i</i> selects the seller with the maximum	
the initial perturbed preference sequence $\hat{\pi}^l$	DP-UCB index to match:	
of each task over sellers:	10 $ m^{\iota}(i) = \max\{I^{\iota}_i(j) \forall j \in F^{\iota}(i)\};$	
Compute stable matching to get the market	11 end	
A Compute stable matching to get the market	12 else	
outcome \mathcal{M}^{ℓ} according to $\{\pi_j \forall j \in \mathcal{S}\}$ and	13 Task <i>i</i> matches the same seller as the last	
$\{\pi_i^{\circ} \forall i \in \mathcal{T}\}$ using the Gale and Shapley	round:	
algorithm;	14 $\mid \mid \mid m^l(i) = m^{l-1}(i);$	
9 else	15 end	
10 Update $I_i^i(j), \forall i \in \mathcal{T}, \forall j \in \mathcal{S}$ and	16 if <i>i</i> wins the conflicts then	
$\{\hat{\pi}_i^l \forall i \in \mathcal{T}\}$ according to Eqs. (6-9).	17 $\mid \mid \mathcal{M}^l \leftarrow \langle i, m^l(i) angle;$	
11 Compute stable matching to get the market	18 $ $ Update $I_i^l(m^l(i))$ and $\{\hat{\pi}_i^l orall i\in\mathcal{T}\}$;	
outcome \mathcal{M}^l in the way of Step 8.	19 end	
12 end	20 end	
13 end	21 end	

- \checkmark We define a novel metric, i.e., δ -stability to measure the stability of the markets.
- \checkmark We propose the DPS-CB and CDPS-CB mechanisms to solve the privacy, stability, and conflicts-avoiding problems.

System, Modeling, and Problem

$\succ \epsilon$ -Differentially private bandit model

$\checkmark \mathbb{P}\{\Phi_i(q_i^{1:l-1}) \in \mathcal{X}\} \le e^{\epsilon} \cdot \mathbb{P}\{\Phi_i(q_i^{1:l-1'}) \in \mathcal{X}\}$ (1)

where $\epsilon > 0$ is a small constant that the policy provides, indicating the privacypreserving level.

- A bandit policy Φ_i of play *i* is a sequence of arm-pulling decisions.
- $\checkmark q_i^{1:l} = \{q_i^1, \dots, q_i^l\}, q_i^{1:l-1} \text{ is its adjacent sequence.}$

13 **end**

10

11

12

 $\begin{array}{c} \bullet & \varepsilon = 10 \\ \bullet & \varepsilon = 2 \\ \bullet & \varepsilon = 1 \\ \bullet & \varepsilon = 0.1 \end{array}$

- > Theoretical Analysis
- \checkmark The two mechanisms satisfies ϵ -differential privacy.
- \checkmark The market outcome computed by twos mechanisms are δ -stable.
- \checkmark The two mechanisms can achieve *sublinear* pessimal stable regret

Performance Analysis

[1] He Sun, Mingjun Xiao, Yin Xu, Guoju Gao, Shu Zhang "Privacy-preserving Stable Crowdsensing Data Trading for Unknown Market", IEEE INFOCOM'23, May. 2023

[2] He Sun, Mingjun Xiao, Yin Xu, Guoju Gao, Shu Zhang. "Crowdsensing Data Trading for Unknown Market: Privacy, Stability, and Conflicts", IEEE Transactions on Mobile Computing, 2024.